Fermentation and anaerobic respiration by Rhodospirillum rubrum and Rhodopseudomonas capsulata.

نویسندگان

  • J E Schultz
  • P F Weaver
چکیده

Rhodospirillum rubrum and Rhodopseudomonas capsulata were able to grow anaerobically in the dark either by a strict mixed-acid fermentation of sugars or, in the presence of an appropriate electron acceptor, by an energy-linked anaerobic respiration. Both species fermented fructose without the addition of accessory oxidants, but required the initial presence of bicarbonate before fermentative growth could begin. Major products of R. rubrum fermentation were succinate, acetate, propionate, formate, hydrogen, and carbon dioxide; R. capsulata produced major amounts of lactate, acetate, succinate, hydrogen, and carbon dioxide. R. rubrum and R. capsulata were also capable of growing strictly through anaerobic, respiratory mechanisms. Nonfermentable substrates, such as succinate, malate, or acetate, supported growth only in the presence of an electron acceptor such as dimethyl sulfoxide or trimethylamine oxide. Carbon dioxide and dimethyl sulfide were produced during growth of R. rubrum and R. capsulata on succinate plus dimethyl sulfoxide. Molar growth yields from cultures grown anaerobically in the dark on fructose plus dimethyl sulfoxide were 3.8 to 4.6 times higher than values obtained from growth on fructose alone and were 56 to 60% of the values obtained from aerobic, respiratory growth with fructose. Likewise, molar growth yields from anaerobic, respiratory growth conditions with succinate plus dimethyl sulfoxide were 51 to 54% of the values obtained from aerobic, respiratory growth with succinate. The data indicate that dimethyl sulfoxide or trimethylamine oxide as a terminal oxidant is approximately 33 to 41% as efficient as O(2) in conserving energy through electron transport-linked respiration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.

After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was couple...

متن کامل

Succinate dehydrogenase in Rhodopseudomonas sphaeroides: subunit composition and immunocross-reactivity with other related bacteria.

Antibodies were raised against the succinate dehydrogenase (SDH) present in the chromatophores of phototrophically grown Rhodopseudomonas sphaeroides. Crossed immunoelectrophoresis experiments indicated that the SDH present in the cytoplasmic membranes of heterotrophically grown R. sphaeroides is probably the same enzyme observed in the chromatophores. The enzyme was extracted by Triton X-100 i...

متن کامل

Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas.

Type strains of the purple nonsulfur species Rhodospirillum rubrum, Rhodospirillum photometricum, and Rhodopseudomonas palustris grew phototrophically on a number of two- and three-carbon halocarboxylic acids in the presence of CO2, by reductive dehalogenation and assimilation of the resulting acid. Strains of each of these species were able to grow on chloroacetic, 2-bromopropionic, 2-chloropr...

متن کامل

Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum.

The gasification of organic waste materials to synthesis gas (syngas), followed by microbial fermentation, provides a significant resource for generating bioproducts such as polyhydroxyalkanoates (PHA). The anaerobic photosynthetic bacterium, Rhodospirillum rubrum, is an organism particularly attractive for the bioconversion of syngas into PHAs. In this study, a quantitative physiological analy...

متن کامل

Mechanism of nitrogenase switch-off by oxygen.

Oxygen caused a reversible inhibition (switch-off) of nitrogenase activity in whole cells of four strains of diazotrophs, the facultative anaerobe Klebsiella pneumoniae and three strains of photosynthetic bacteria (Rhodopseudomonas sphaeroides f. sp. denitrificans and Rhodopseudomonas capsulata strains AD2 and BK5). In K. pneumoniae 50% inhibition of acetylene reduction was attained at an O2 co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 149 1  شماره 

صفحات  -

تاریخ انتشار 1982